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CH-8093 Zürich, Switzerland

E-mail: stefanh@phys.ethz.ch, kirsch@phys.ethz.ch

Abstract: We study a three-dimensional N = 3 U(N)k × U(N)−k Chern-Simons matter

theory with flavour, corresponding to the N = 6 Aharony-Bergman-Jafferis-Maldacena

CSM theory coupled to 2Nf fundamental fields. The dual holographic description is given

by the near-horizon geometry of N M2-branes at a particular hypertoric geometry M8.

We explicitly construct the space M8 and match its isometries to the global symmetries of

the field theory. We also discuss the model in the quenched approximation by embedding

probe D6-branes in AdS4 × CP
3.

Keywords: AdS-CFT Correspondence, Chern-Simons Theories

ArXiv ePrint: 0903.1730

c© SISSA 2009 doi:10.1088/1126-6708/2009/04/129

mailto:stefanh@phys.ethz.ch
mailto:kirsch@phys.ethz.ch
http://arxiv.org/abs/0903.1730
http://dx.doi.org/10.1088/1126-6708/2009/04/129


J
H
E
P
0
4
(
2
0
0
9
)
1
2
9

Contents

1 Introduction 1

2 Chern-Simons Yang-Mills theory with fundamental matter 2

2.1 The action 3

2.2 N = 3 supersymmetric theory and conformal invariance 4

3 Brane construction 5

3.1 T-dual setups and lift to M-theory 7

3.2 Near-horizon geometry 8

4 D6-branes in AdS4 × CP
3 10

4.1 Geometry of CP
3 11

4.1.1 Metric and curvature 11

4.1.2 Lagrangian submanifold 12

4.2 Killing spinors of CP
3 12

4.3 Embedding of D6-branes 13

5 Conclusions and open questions 14

A Symmetries of the action 15

B Killing spinors of CP
3 16

1 Introduction

Recently, there has been a renewed interest in three-dimensional superconformal Chern-

Simons-matter (CSM) theories. Other than their purely topological cousins, this type of

Chern-Simons theories exhibits non-trivial dynamics due to the coupling to matter fields.

Bagger and Lambert [1] as well as Gustavsson [2] (BLG) constructed a three-dimensional

N = 8 superconformal Chern-Simons gauge theory with manifest SO(8) R-symmetry. A

unitary realization of the involved three-algebra restricted the gauge group to SO(4). After

the reformulation of the BLG theory as a SU(2)×SU(2) CSM theory [3], Aharony, Bergman,

Jafferis and Maldacena (ABJM) [4] constructed a N = 6 CSM theory with gauge group

U(N) × U(N) at level k as the world-volume theory of N M2-branes at a C
4/Zk orbifold.

A prerequisite for making the above theory interesting for more realistic applications,

e.g. in condensed matter physics, is the introduction of light matter fields in the funda-

mental representation of the gauge group. The fundamentals could serve, for instance, as

a prototype for strongly-coupled electrons. First steps in this direction have been taken
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in [5–7], which discussed N = 2 supersymmetric CSM theories with fundamental matter

and discovered an interesting strong-weak coupling Seiberg-type duality. However, refs. [5–

7] have not yet addressed a possible holographic description of CSM theories with flavour,

which over the last years has turned out to be remarkably successful for Yang-Mills theories

(see e.g. [8] for a review).

In this note we fill this gap by proposing a holographic description of the ABJM model

coupled to 2Nf light fundamental fields. We show that the field theory, whose action

will be written using N = 2 superspace formalism, preserves N = 3 supersymmetry for

particular values of the coupling constants. We find that other than in the (unflavoured)

ABJM model, where supersymmetry is enhanced to N = 6 [4], the supersymmetry of the

present model remains N = 3 in the infrared. The latter describes the low-energy region

of the open-string sector of the web-deformed type IIB configuration studied in [4] with

two additional stacks of Nf D5-branes. The T-dual type IIA setup, now involving 2Nf

D6-branes, lifts to N M2-branes at the origin of a toric hyperkähler geometry M8. We

explicitly construct M8 and compare its isometry group to the global symmetries of the

dual N = 3 field theory.

The corresponding near-horizon geometry includes the information of the (uplifted)

flavour D6-branes and therefore their backreaction on the geometry. However, the com-

plicated structure of the near-horizon metric impedes further progress along these lines.

We therefore continue to discuss flavours in the quenched approximation, using holo-

graphic methods as initiated in [9–11]. This requires the embedding of probe D6-branes

in AdS4 × CP
3, which is the near-horizon geometry of the ABJM setup in type-IIA string

theory [4]. The D6-branes fill the AdS4 space and wrap around a special Lagrangian sub-

manifold inside the CP
3. We show that the real projective space RP

3 is such a submanifold

inside the CP
3, and thus the corresponding embedding of the D6-branes is stable and

supersymmetric.

The paper is organized as follows. In section 2 we present the N = 3 Chern-Simons

Yang-Mills theory with matter in the fundamental representation of the U(N)k ×U(N)−k
gauge group. In section 3 we discuss the corresponding brane setup in type IIB string

theory, its lift to M -theory and the corresponding near-horizon geometry. In section 4 we

discuss the embedding of probe D6-branes in AdS4 × CP
3.

Note added: After publication of the first version of this work, two further papers [12,

13] appeared in the arXiv, which have considerable overlap with the present work. In

particular, taking into account a comment in the introduction of [12], we clarified the

discussion of our brane-setup in section 3.

2 Chern-Simons Yang-Mills theory with fundamental matter

In this section we study a three-dimensional N = 3 superconformal U(N) × U(N) Chern-

Simons-matter theory with flavour in the fundamental representation of the gauge group.

This theory will be obtained by coupling Nf fundamental hypermultiplets to the ABJM

theory [4].
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U(N) U(N) U(k) U(k) U(Nf ) U(Nf ) ∆

A1, A2 N N 1 1 1 1
1
2

B1, B2 N N 1 1 1 1 1
2

Φ1, V1 adjoint 1 1 1 1 1 1, 0

Φ2, V2 1 adjoint 1 1 1 1 1, 0

q1 N 1 1 k 1 1
1
2

q̃1 N 1 k 1 1 1 1
2

q2 1 N k 1 1 1 1
2

q̃2 1 N 1 k 1 1 1
2

Q1, Q̃
†
1

N 1 1 1 Nf 1 1
2

Q2, Q̃
†
2 1 N 1 1 1 Nf

1
2

Table 1. N = 2, d = 3 superfields in the field theory.

2.1 The action

The ABJM theory has gauge group U(N)k × U(N)−k and its action can be written in

manifest N = 2 language [4]. Let us briefly review its field content. There are two

bifundamental N = 4 hypermultiplets (A,B†)1,2 and two adjoint N = 4 vector multiplets

consisting of the N = 2 vector fields V1,2 and the chiral fields Φ1,2. Formally, there are

also k chiral multiplets (q1,2) in the fundamental and k chiral multiplets (q̃1,2) in the anti-

fundamental representation of each gauge group. These are assumed to be massive and,

when integrated out, produce a Chern-Simons term via the parity anomaly. Thus at low

energies all fundamental fields are integrated out, leaving only fields in the adjoint or

bifundamental representation. In order to also have massless fundamental fields in the far

infrared, we introduce 2Nf fundamental hypermultiplets (Qr, Q̃r†)1,2 with r = 1, . . . , Nf .

The N = 2 superfields and their quantum numbers are summarized in the upper part of

table 1.

In N = 2 superspace, the action can be written as a sum of three terms S = Smat +

SCS + Spot, a matter part, a Chern-Simons part and a superpotential given by

Smat =

∫

d3xd4θTr
(

−Āie−V1Aie
V2 − B̄ie

−V2Bie
V1

)

− Q̄ri e
−ViQri − Q̃ri e

Vi ¯̃Qri , (2.1)

SCS = −i k
4π

∫

d3xd4θ

∫ 1

0
dtTr

(

V1D̄
α(etV1Dαe

−tV1) − V2D̄
α(etV2Dαe

−tV2)
)

, (2.2)

Spot =

∫

d3xd2θ (WABJM +Wflavour) + c.c. , (2.3)

where

WABJM = − k

8π
Tr (Φ2

1 − Φ2
2) + Tr (BiΦ1Ai) + Tr (AiΦ2Bi) (2.4)

and

Wflavour = α1Q̃
r
1Φ1Q

r
1 + α2Q̃

r
2Φ2Q

r
2 . (2.5)
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B1
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2 Qr

1

B2

A1

U(N)

U(Nf )

Q̃r
2 Q̃r

1

Figure 1. Quiver diagram of the Chern-Simons-Yang-Mills theory with flavours.

The first term in the ABJM superpotential WABJM [4] involving Φ2
1 and Φ2

2 is the N = 3

supersymmetry completion of the Chern-Simons action SCS, while the remaining two terms

include the coupling to the bifundamentals A1,2 and B1,2. The superpotential Wflavour

describes the coupling of the new flavour fields Q̃r1,2, Q
r
1,2 to the adjoints Φ1,2. The action

preserves N = 2 supersymmetry for arbitrary values of the coupling constants α1,2.

There are no kinetic terms for the fields of the N = 4 vector multiplet, which contains

the N = 2 superfields V1,2 and Φ1,2. These fields are massive and will be integrated out at

low energies. Upon integrating out the adjoint fields Φ1,2, we get the superpotential

W = WABJM +Wflavour

=
4π

k
Tr (A1B1A2B2 −A2B1A1B2) +

4πα1

k
Q̃1(A1B1 +A2B2)Q1

− 4πα2

k
Q̃2(B1A1 +B2A2)Q2 +

2πα2
1

k
Q1Q̃1Q1Q̃1 −

2πα2
2

k
Q̃2Q2Q̃2Q2 . (2.6)

The first term is exactly the same as in the Klebanov-Witten theory associated with the

conifold [14]. The remaining terms proportional to α1 and α2 describe the coupling of

the fundamentals to the ABJM model. Similar terms appear when fundamental matter is

coupled to the Klebanov-Witten theory, see for instance [15, 16]. The field content and

the superpotential of the low-energy theory can best be represented by the quiver diagram

shown in figure 1.

2.2 N = 3 supersymmetric theory and conformal invariance

So far we have considered generic coupling constants α1 and α2. However, it turns out that

upon choosing the particular values α1 = −α2 = 1, the amount of supersymmetry preserved

by the action (2.1)–(2.3) is enhanced to N = 3. This is accompanied by an enhancement

of the U(1)R R-symmetry to SU(2)R, which is explicitly shown in appendix A, where we

write the bosonic part of the action in a manifest SU(2)R invariant way.

As we have also shown in appendix A, apart from the SU(2)R symmetry, the action

is also invariant under an additional SU(2)D symmetry.1 It is important to notice that

1This symmetry simultaneously exchanges A1 with A2 and B1 with B2 and can be thought of as the

diagonal SU(2) of the global SU(2)A × SU(2)B group of the ABJM model [4].
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the latter is a global symmetry which, in particular, commutes with SU(2)R. Therefore,

there is no enhancement of the R-symmetry group (or supersymmetry), in contrast to the

ABJM model [4] and related theories, e.g. [17, 18].

In addition to the SU(2)R × SU(2)D symmetry of (2.6) there is finally also the “bary-

onic” U(1) symmetry

U(1)b : Ai → eiαAi , Bi → e−iαBi , Qri , Q̃
r
i inert , (2.7)

which has already been discussed in detail in [4]. This symmetry has to be distinguished

from the baryonic (U(1) × U(1))B subgroup of the U(Nf ) × U(Nf ) flavour group.

All couplings in (2.6) are marginal, and the theory is classically conformal invariant.

The standard non-renormalization theorem for 2+1-dimensional Yang-Mills theories cou-

pled to matter fields does not apply to CSM theories [19]. Nevertheless, there are good

reasons to believe that, similarly to the ABJM theory [4] and the general class of CSM

theories studied in [19], the present N = 3 CSM theory (α1 = −α2 = 1) is also con-

formal invariant at the quantum level. Note first that the Chern-Simons level k is not

renormalized beyond a possible one-loop shift [20]. Moreover, as found in [19], possible

corrections to the classical Kähler potential are either irrelevant or absorbed by a wave

function renormalization. However, since for N = 3 supersymmetry, U(1)R is part of the

(non-anomalous) SU(2)R R-symmetry, the conformal dimensions of all fields are protected

from quantum corrections. Therefore, there is no U(1)R charge renormalization nor wave

function renormalization, excluding relevant or marginal corrections to the Kähler poten-

tial. Non-renormalization of the coupling constants in the superpotential has explicitly

been shown to two-loop order in [21] for CSM theories with matter fields in the funda-

mental representation. We expect that the coupling to the ABJM term does not destroy

the non-renormalization. This strongly suggests conformal invariance of the action at the

quantum level.

3 Brane construction

In this section we will make a proposal for the gravitational theory dual to the Chern-Simons

Yang-Mills theory with fundamental matter discussed in the previous section. The gravita-

tional theory corresponds to the near-horizon geometry of the following brane-construction.

We start from the type IIB setup of [4] which consists of two NS5-branes along 012345,

which are separated in the compact direction 6, and N D3-branes along 0126. In addition,

there are k D5-branes along 012349 which intersect the D3-branes along 012 and one of

the two NS5-branes along 012345, as shown in figure 2.

This setup preserves N = 2 supersymmetry and gives rise to the following N = 2

superfields [4]: The NS5-branes divide the D3-brane worldvolume into two intervals along 6.

The 3-3 open strings therefore give rise to two U(N) N = 4 vector multiplets (V,Φ)1,2
consisting of N = 2 vector and chiral multiplets. They also give rise to two complex

bifundamental N = 4 hypermultiplets (A,B†)1,2. Furthermore, we note that the (left)

NS5-brane splits the k D5-branes into two stacks of k half-D5-branes along the direction 9.

This phenomenon is dubbed flavour doubling, see e.g. [22]: Each stack of half D5-branes

– 5 –
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NS5 NS5

Nf D5’k D5

N D3

NS5

(1,k)5
Nf D5’

N D3

Nf D5’ Nf D5’

Figure 2. Type IIB brane setup of [4] plus two stacks of Nf “flavour” D5-branes before (lhs.) and

after the web deformation (rhs.).

gives rise to a U(k) global symmetry and provides 2k fundamental flavours, i.e. k flavours

for each gauge factor. At low energies the 3-5 and 5-3 open string modes therefore generate

k fundamental chiral fields q1,2, q̃1,2. These fields transform under the U(k) × U(k) global

symmetry as indicated in table 1. The remaining modes coming from strings with both

ends on 5-branes are assumed to be decoupled at low energies.

We may now add another class of fundamental fields by introducing 2Nf “flavour”

D5′-branes along 012789.2 These branes intersect with the k D5-branes on a three-brane

along 0129 and overlap with the D3-branes along 012. This does not break any further

supersymmetries, i.e. the total configuration still preserves N = 2. At low energies the 3-5′

and 5′-3 strings give rise to 2Nf additional fundamental hypermultiplets: (Qr, Q̃r†)1,2 with

r = 1, . . . , Nf . The corresponding U(Nf ) × U(Nf ) flavour symmetry is non-chiral.

We now perform a web deformation, in which the k D5-branes and the NS5-brane

merge into an intermediate (1,±k)5-brane along 012[3, 7]θ1 [4, 8]θ2 [5, 9]θ3 , as explained in

detail in [4]. This notation means that the (1,±k)5-brane is aligned along 012 and stretched

along directions mixing 345 and 789. Only if the θi (i = 1, 2, 3) are all the same and satisfy

tan θi = k supersymmetry is enhanced from N = 2 to N = 3 [23, 24].

The result of this deformation is a triple 5-brane intersection of a (1, 0)5-brane (NS5-

brane), a (1, k)5-brane, and two (0, Nf )5-branes (Nf D5-branes). These branes overlap over

012, and the remaining directions of the 5-branes form three-planes in the E
6 parameterized

by (x3, x4, x5, x7, x8, x9). The angle θp,q of two of these three-planes is given by [24]

cos θp,q =
p · q
√

p2q2
, (3.1)

where p·q = piqi, and p, q are two of the three SL(2,Z) charge vectors p = (1, 0), p′ = (1, k),

p′′ = (0, Nf ). We obtain the angles

tan θp,p′ = k , tan θp′,p′′ =
1

k
, θp,p′′ =

π

2
, (3.2)

which satisfy θp,p′ + θp′,p′′ = θp,p′′ = π
2 . The 5-branes and their intersection angles are

shown in figure 3. The rotations in the three three-planes by the same element of SO(3)R

2The D5′-branes are actually grouped along x6 in two stacks of Nf D5′-branes, one in each D3-brane

sector.
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(1,k)5

NS5

θ p’, p’’

θ p, p’

N  D5’f

345

789

Figure 3. Three types of 5-branes in E6.

correspond to the R-symmetry transformations of the N = 3 ultraviolet field theory (2.1)–

(2.5) (with α1 = −α2 = 1).

We finally note that our setup differs from those considered in [5, 6], which study

N = 2 supersymmetric Chern-Simons theories with fundamental fields. There the (1, k)5-

brane is rotated in the 3-7 plane, but not in the 4-8 and 5-9 plane, θ1 = θ, θ2 = θ3 = 0.

Because of this supersymmetry is reduced to N = 2 there.

3.1 T-dual setups and lift to M-theory

As in [4] we begin by T-dualizing along the direction 6. The resulting web-deformed type

IIA setup then consists of the following branes: The N D3-branes map to N D2-branes

along 012, and the NS5-brane turns into a single Kaluza-Klein monopole with world-volume

along 012345. The (1, k)5 brane is T-dual to an object along 0126[3, 7]θ [4, 8]θ [5, 9]θ (with

tan θ = k), which consists of k D6-branes and 1 KK monopole associated with the 6

direction [4]. In addition we now have 2Nf D6′-branes along 0126789 descending from the

flavour D5′-branes in the type IIB setup.

The type IIA setup may now be lifted to M-theory, where the D2-branes naturally

become M2-branes along 012. The object along 0126[3, 7]θ [4, 8]θ [5, 9]θ and the D6′-branes

become KK monopoles with circular direction in 6 and 10 and a linear combination of

both [4]. The resulting M-theory configuration will be a stack of N M2-branes located

at the origin of a toric hyperkähler manifold [24]. This is an eight-dimensional space M8

with sp(2) holonomy and preserves 3/16 of the supersymmetries of the eleven-dimensional

supergravity, which is precisely the amount of supersymmetry expected for the dual of

theories in 2+1 dimensions with N = 3 supersymmetry. Adding a stack of N M2-branes

at the origin of M8 does not break any additional supersymmetry [24].

The metric of M8 is given by

ds2M8
= Uijd~x

i · d~xj + U ij(dϕi +Ai)(dϕj +Aj) , (3.3)

with the following quantities

Ai = d~xj · ~ωji = dxjaω
a
ji , ∂

xj
a
ωbki − ∂xk

b
ωaji = ǫabc∂

xj
c
Uki , (3.4)

– 7 –
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with i, j = 1, 2. The three-vectors ~x1 and ~x2 describe positions in two three-planes pa-

rameterized by (x7, x8, x9) and (x3, x4, x5), respectively. The two circular directions of the

toric geometry are in the directions 6 and 10.

The two-dimensional matrix Uij contains the information of the uplifted five-branes of

the IIB setup [24]. Here it is given by

U = 1 +

(

h1 0

0 0

)

+

(

h2 kh2

kh2 k
2h2

)

+

(

0 0

0 N2
fh3

)

, (3.5)

with

h1 =
1

2|~x1|
, h2 =

1

2|~x1 + k~x2|
, h3 =

1

|Nf~x2|
. (3.6)

The first three terms in (3.5) are as in the ABJM case without flavours [4], while the last

term contains the information of the uplifted flavour branes. In the type IIB setup the

functions h1,2,3 stem from the (1, 0)5-brane (NS5-brane), the (1, k)5-brane, and the (two

stacks of) (0, Nf )5-branes (D5-branes), respectively.

An appropriate ansatz for N M2-branes at the origin of M8 is

ds2 = H−2/3(−dX2
0 + dX2

1 + dX2
2 ) +H1/3ds2M8

, (3.7)

F = dX0 ∧ dX1 ∧ dX2 ∧ dH−1 , (3.8)

where the scalar function H only depends on the coordinates of M8. The supergravity

equations of motion then require that H satisfies the Laplace equation on M8,

∂µ(
√
ggµν∂νH) = 0 , (3.9)

with gµν given by (3.3).

3.2 Near-horizon geometry

Here we do not attempt to explicitly solve (3.9) but instead explore the hypertoric geometry

of the manifold M8 in more detail. Given the form (3.5) of the matrix Uij , we see that

the metric (3.3) develops a physical singularity at the point ~x1 = ~x2 = 0. In this near-

core region the constant piece of the matrix (3.5) is subdominant and can henceforth be

dropped. In the following we will carry on to study this region more closely. We begin by

presenting the solution to the equations (3.4) by writing an expression for the gauge field

one-forms

A1 =
(x2

12dx
1
1 − x1

12dx
2
1) + k(x2

12dx
1
2 − x1

12dx
2
2)

2|~x12|(|~x12| + x3
12)

+
x2

1dx
1
1 − x1

1dx
2
1

2|~x1|(|~x1| + x3
1)
,

A2 =
k(x2

12dx
1
1 − x1

12dx
2
1) + k2(x2

12dx
1
2 − x1

12dx
2
2)

2|~x12|(|~x12| + x3
12)

+
Nf (x

2
2dx

1
2 − x1

2dx
2
2)

|~x2|(|~x2| + x3
2)

, (3.10)

where we have introduced the shorthand notation ~x12 = ~x1+k~x2. This explicitly determines

the metric by inserting (3.10) into (3.3). However, due to the complicated form of (3.10)

– 8 –
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the complete metric becomes rather difficult to handle and we therefore will not work with

it directly.

Instead we want to discuss the isometry group of the geometry (3.3) with solution (3.10).

First of all, there are two global U(1) symmetries since (3.3) is invariant under a shift of

each of the ϕi by a constant. We choose to parameterize these U(1)s in the following

manner

U(1)gauge :

{

ϕ1 7−→ ϕ1 + λ1

ϕ2 7−→ ϕ2 + λ1
, with λ1 ∈ [0, 2π) , (3.11)

U(1)b :

{

ϕ1 7−→ ϕ1 + λ2

ϕ2 7−→ ϕ2 − λ2
, with λ2 ∈ [0, 2π) , (3.12)

where λ1 and λ2 are just two constant parameters.3 The diagonal U(1)gauge can be pro-

moted to a local symmetry provided that we also transform the gauge potential (3.10). In

fact, U(1)gauge is part of a larger SU(2)gauge “gauge” symmetry,4 which acts in the usual

way on (3.10)

SU(2)gauge : ϕi 7−→ ϕi + Λ(~x1, ~x2) , and Ai 7−→ Ai − ∂iΛ(~x1, ~x2) . (3.13)

So far we have only been considering invariances of (3.3) involving ϕi and Ai, while there is

additionally also an SO(3) symmetry which acts diagonally on ~x1 and ~x2. As we can see5

from (3.10), in order to keep the metric (3.3) invariant, such an SO(3) rotation will only

close up to a gauge transformation of (3.10). We can, for example, for Ω ∈ SO(3) write a

transformation which will leave the metric invariant in the following manner

SO(3) :











(~x1, ~x2) 7−→ (Ω~x1,Ω~x2)

Ai 7−→ Ai − ∂ih(Ω, ~x1, ~x2)

ϕi 7−→ ϕi + h(Ω, ~x1, ~x2)

. (3.14)

Here, according to [25], h is a function of Ω and ~x1,2, which needs to satisfy

h(Ω1Ω2, ~x1, ~x2) = h(Ω1,Ω2~x1,Ω2~x2) + h(Ω2, ~x1, ~x2) , and h(1, ~x1, ~x2) = 0 . (3.15)

We can therefore summarize that the complete isometry group of the near-horizon geometry

is given by

SO(3) × SU(2)gauge × U(1)b . (3.16)

3Notice that we have called the second U(1) symmetry U(1)b. This is not by chance, since we will see

later on that this U(1) maps precisely to the “baryonic“ U(1)b symmetry (2.7) in the dual gauge theory.
4This symmetry is local w.r.t. the internal coordinates ~x1, ~x2 and therefore global w.r.t. the spacetime

coordinates X0,1,2.
5For a similar discussion in the context of the Taub-Nut space see e.g. [25].
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This fits nicely with our analysis of the symmetries present in the field theory (see sec-

tion 2). Indeed, the SO(3) symmetry takes over the role of the SU(2) R-symmetry group,

while we can identify SU(2)gauge with the additional global SU(2)D symmetry present in

the dual CFT. As we have already remarked, the global U(1)b is identified with U(1)b
of (2.7). We should finally also mention that in the limit Nf = 0 the isometry group (3.16)

is in fact enhanced. Most prominently, SO(3), which in (3.14) acts diagonally on (~x1, ~x2), is

enhanced to SO(3)×SO(3) acting separately on ~x1 and ~x2. This in turn means that (3.16)

becomes isomorphic to SU(4) × U(1)b, which ties in nicely with the analysis of the sym-

metries in the dual ABJM-model (see [4]). There it was found, that the three-dimensional

Chern-Simons matter theory has an SU(4)R R-symmetry and an additional global bary-

onic U(1).

4 D6-branes in AdS4 × CP
3

In the previous section we discussed the fully backreacted solution of the dual gravitational

theory. The structure of the corresponding near-horizon geometry is quite involved, which

makes a full discussion of the supergravity fluctuations of this background technically

difficult. A simpler approach towards a gravity dual of the ABJM theory with flavour is

to treat the fundamental fields in the quenched approximation. On the gravity side this

corresponds to taking the probe limit [9], in which it is assumed that for a small number

of flavours the backreaction of the D6-branes may be ignored. We will therefore embed

probe D6-branes into the (type-IIA) near-horizon geometry of the ABJM model, which is

AdS4 × CP
3 [4]. Since flavour branes are spacetime-filling, the D6-branes extend along all

the directions of the AdS4 space and wrap a Lagrangian-(codimension three)-cycle inside

CP
3. For consistency of the probe approximation, we need to make sure that this cycle is

stable and supersymmetric.6

The most natural guess for such a Lagrangian subcycle is a real projective space

RP
3 ⊂ CP

3. This is due to the well-known mathematical fact that a RP
3 is among the

simplest codimension-three cycles inside CP
3 [27]. Moreover, it is also known [28] that RP

3

fulfills certain mathematical stability-criteria under special Hamiltonian deformations. This

already points towards the fact that RP
3 is indeed a stable cycle for the probe D6-brane

to wrap.

In the following we will not only show that the configuration of a D6 wrapping a

RP
3 ⊂ CP

3 is stable but moreover also supersymmetric. We will proof stability by showing

that this cycle gives rise to a generalized calibration 3-form. As a by-product of this

computation we will find explicit expressions for the Killing spinors of CP
3.

6The analogue in Klebanov-Witten theory with flavour corresponds to the embedding of probe D7-branes

in AdS5 × T 1,1 studied in [15, 16, 26].
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4.1 Geometry of CP
3

4.1.1 Metric and curvature

Let us start by reviewing some basic facts about the AdS4 × CP
3 supergravity solution.

According to [4] the metric, the dilaton and the 2- and 4-form field-strengths are given by

ds2 =
R3

k

(

1

4
ds2Ads4 + ds2

CP
3

)

, e2φ =
R3

k3
,

F (2)
mn = kJmn , F (4)

µνρτ =
3R3

8
ǫµνρτ . (4.1)

Here we have used Greek indices µ, ν = 1, . . . , 4 to denote the directions of AdS4 and Latin

indices m,n = 1, . . . , 6 for the CP
3. Moreover, ds2

CP
3 is the standard Fubini-Study metric

given by

ds2
CP

3 =
dζ̄αdζ

α

(1 + ζ̄γζγ)2
+
ζαζ̄βdζ̄αdζ

β

(1 + ζ̄γζγ)4
, (4.2)

with

ζ1 = tanµ sinα sin
ϑ

2
e

i
2
(ψ−ϕ+χ) ,

ζ2 = tanµ cosαe
i
2
χ ,

ζ3 = tanµ sinα cos
ϑ

2
e

i
2
(ψ+ϕ+χ) , (4.3)

and 0 ≤ µ, α ≤ π/2, 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π [29]. More explicitly, in terms of the

left-invariant SU(2) one-forms

σ1 = cosψdϑ + sinϑ sinψdϕ , σ2 = sinψdϑ − sinϑ cosψdϕ , σ3 = dψ + cos ϑdϕ ,

the metric ds2
CP

3 can be written as

ds2
CP

3 = dµ2 + sin2 µ

[

dα2 +
1

4
sin2 α(σ2

1 + σ2
2 + cos2 ασ2

3) +
1

4
cos2 µ(dχ+ sin2 ασ3)

2

]

.

(4.4)

The Kähler form Jmn is given by

J =
1

2
dA =

1

4
d
[

sin2 µ(dχ+ sin2 ασ3)
]

= sin 2µ(dχ+ sin2 α(dψ + cos ϑdϕ)) ∧ dµ− 1

4
sin2 µ sin2 α sinϑdϕ ∧ dϑ . (4.5)

For the choice (4.2) of the metric, CP
3 is Einstein satisfying the relation

Rmn = 8gmn . (4.6)
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4.1.2 Lagrangian submanifold

Given the (complex) parameterization (4.3), a RP
3 ⊂ CP

3 is easily found by making sure

that ζ1,2,3 all have the same (fixed) complex phase ω. As we can see by a quick inspection,

this is achieved by solving

ψ − ϕ+ χ = ω, χ = ω, ψ + ϕ+ χ = ω . (4.7)

For the simplest choice ω = 0 the solution ψ = ϕ = χ = 0 yields a manifestly real

parameterization of RP
3 = S3/Z2 with the standard metric

ds2
RP

3 = dµ2 + sin2 µdα2 +
1

4
sin2 α sin2 µdϑ2 . (4.8)

The isometry group of RP
3 is Z2⋉(SO(3)×SO(3)), where ⋉ denotes a semi-direct product.

This means the isometry group consists of two SO(3) groups and a discrete symmetry

exchanging the two SO(3) groups, see e.g. [30]. The occurrence of two SO(3)’s reflect the

SU(2) R-symmetry and the global SU(2)D symmetry of the field theory. In the following

we will show that a D6-brane wrapped around this submanifold is indeed a stable and

supersymmetric configuration.

4.2 Killing spinors of CP
3

For the construction of a bispinor 3-form in the next subsection, we will need the Killing

spinors of CP
3. It is a well-known fact [31] that there are six Killing spinors on CP

3. They

can be found as solutions of the following two equations, which stem from the supervaria-

tions of the fermionic degrees of freedom in supergravity

Dmǫ−
1

32

(

ΓmQ+ 16Γ̃mΓ0

)

ǫ− 9

16
Γmǫ = 0 , (4.9)

3

8
√

2
QΓ0ǫ+

3

4
√

2
Γ0ǫ = 0 . (4.10)

Here we have introduced the quantities

Q = JmnΓmnΓ0 , and Γ̃m = Jm
nΓn . (4.11)

Moreover, Γm are the six-dimensional Dirac matrices. Relation (4.10) is an eigenspinor

relation for the operator Q, and it was shown in [31] that Q has the following eigenvalues

{−2,−2,−2,−2,−2,−2, 6, 6} . (4.12)

Since we know that the background AdS4 × CP
3 preserves N = 6 supersymmetry, we

conclude that we need to look for eigenspinors to the eigenvalue −2 because the latter has
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a 6-fold degeneracy. The most general spinor compatible with this eigenvalue is given by

ǫ =





























f1 + f2 + f6

−f6

−f3 + f4 + f5

f5

f4

f3

f2

f1





























, (4.13)

where fi=1,...,6 are six arbitrary functions of the coordinates (µ, α, ϑ, ϕ, ψ, χ). The exact

functional dependence can be fixed by inserting this ansatz into the remaining killing spinor

equation (4.9). This yields a system of coupled first order partial differential equations,

which can be solved analytically. Since the computations are rather tedious, we will not re-

late all the details here, but content ourselves by giving the explicit solution in appendix B.

4.3 Embedding of D6-branes

The Killing spinors of CP
3 can now be used to compute the bispinor 3-form

Ωmnp = ǭΓmnpǫ . (4.14)

Since the full Ω is a rather lengthy expression, we refrain from writing it down completely,

but only display the relevant component. Following our logic in section 4.1.2 concerning

the Lagrangian submanifold, the latter is parameterized by (µ, α, ϑ), while (ψ,ϕ, χ) are set

to constant values. Therefore, the relevant component of Ω is Ωµαϑ given by

Ωµαϑ =
1

2
e−

i
2
(2ϕ+χ+2ψ)

(

ei(ϕ+χ+2ψ)λ2
1 + eiϕλ2

2 + eiψ
(

λ2
4 + e2iϕλ2

6 + eiχ
(

e2iϕλ2
3 + λ2

5

))

)

× sinα sin2 µ . (4.15)

Notice that this is a complex expression, which we can separate into real and imaginary

part

Re(Ωµαϑ) =
1

2
sinα sin2 µ (4.16)

×
(

(

λ2
5 + λ2

6

)

cos
(

φ− χ

2

)

+
(

λ2
3 + λ2

4

)

cos
(

φ+
χ

2

)

+
(

λ2
1 + λ2

2

)

cos
(χ

2
+ ψ

))

,

Im(Ωµαϑ) = −1

2
sinα sin2 µ (4.17)

×
(

(λ2
5 − λ2

6) sin
(

φ− χ

2

)

+
(

λ2
4 − λ2

3

)

sin
(

φ+
χ

2

)

+
(

λ2
2 − λ2

1

)

sin
(χ

2
+ ψ

))

.

Following [32],7 in order to be a real calibration form the restriction of Ω to the Lagrangian

submanifold needs to satisfy

Im(Ω)∣
∣ψ=ϕ=χ=0

= 0 , and Re(Ω)∣
∣ψ=ϕ=χ=0

≃ Vol
RP

3 , (4.18)

7For generalized calibrations in backgrounds containing AdS4 see also [33].
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where Vol
RP

3 is the volume form of the submanifold. Inserting (4.16) and (4.17) into (4.18)

we indeed find

Im(Ω)∣
∣ψ=ϕ=χ=0

= 0 , (4.19)

Re(Ω)∣
∣ψ=ϕ=χ=0

=
1

2
(λ2

1 + λ2
2 + λ2

3 + λ2
4 + λ2

5 + λ2
6) sinα sin2 µ . (4.20)

Comparing to (4.8) we see that this is indeed proportional to the volume form of RP
3

showing that Ω is indeed a calibration form. The chosen embedding of the D6-branes is

thus stable and supersymmetric. Naively, we expect that the D6-brane embedding breaks

half of the supersymmetries of the AdS4 × CP
3 background, which ties in with the N = 3

supersymmetry of the field theory. Clearly, to show this precisely would require a careful

analysis of the κ-symmetry.

5 Conclusions and open questions

In this note we discussed an N = 3 version of the ABJM model with 2Nf fields in the

fundamental representation of the U(N)k × U(N)−k gauge group. The theory has a dual

description in terms of N M2-branes at a hypertoric geometry M8, given by the metric (3.3)

with (3.5) and (3.10). We argued that the isometry of M8 is SU(2) × SU(2) × U(1),

which matches to the SU(2) R-symmetry of N = 3 supersymmetry, a global SU(2)D
symmetry and a U(1)b “baryonic” symmetry in the dual field theory. Of course, a complete

construction of the near-horizon geometry would require to also determine the harmonic

function H of the geometry by solving the Laplace equation (3.9), possibly along the lines

of [34].

Another approach outlined in this paper is to consider the “flavour” D6-branes in

the probe approximation, which corresponds to quenched flavours in the field theory. This

requires the embedding of the D6-branes into the AdS4×CP
3 near-horizon geometry of the

ABJM model. We showed that RP
3 is a special Lagrangian three-cycle in CP

3 and that D6-

branes wrapping AdS4 × RP
3 are stable and supersymmetric. Since the isometries of RP

3

match again the global symmetries of the field theory, we expect that fluctuations of the D6-

branes are dual to bound state operators of (massless) fundamentals. It would be interesting

to verify this by an explicit calculation. This could possibly be done (numerically) using

the Dirac-Born-Infeld action evaluated on the world-volume of the D6-branes. We leave

this for future work.
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A Symmetries of the action

In this section we will explore the symmetry content of the action (2.1)–(2.3) for the par-

ticular values α1 = −α2 = 1. In the way (2.1)–(2.3) is written only N = 2 supersymmetry

is manifest. In order to exhibit a possible enhancement of the latter we need to get rid of

the auxiliary fields as they are intimately tied to the N = 2 superspace formulation. We

therefore need to work out the action in component formulation. To this end, we recall the

Grassmann expansion of all superfields involved. The chiral superfields are of the form

Ai = ai +
√

2θψ
(A)
i + θ2F

(A)
i , Bi = bi +

√
2θψ

(B)
i + θ2F

(B)
i , (A.1)

Qri = qri +
√

2θζri + θ2Gri , Q̃ri = q̃ri +
√

2θζ̃ri + θ2G̃ri , (A.2)

while the vector superfields have the expansion

Vi = 2iθθ̄σi + 2θγµθ̄Aµ,i +
√

2iθ2θ̄χ̄i −
√

2iθ̄2θχi + θ2θ̄2Di (i = 1, 2) . (A.3)

Although we have also explicitly written down fermionic components in the Grassmann

expansion, we will in the following only focus on the scalar fields, namely (ai, bi, q
r
1,2, q̃

r
1,2).

8

It is then straight-forward to eliminate the auxiliary fields (F
(A,B)
i , Gr1,2, G̃

r
1,2, σi,Di) from

the action (2.1)–(2.3), after which the pure scalar part becomes

S =
4π2

3k2

[

q1aq̄
a
1q

1
b q̄
b
1q

1
c q̄
c
1 + q2aq̄

a
2q

2
b q̄
b
2q

2
c q̄
c
2 − 4q1aq̄

b
1q

1
c q̄
a
1q

1
b q̄
c
1 − 4q2aq̄

b
2q

2
c q̄
a
2q

2
b q̄
c
2+

+ aiaā
a
i a
j
bā
b
ja
k
c ā
c
k + āai a

i
aā
b
ja
j
bā
c
ka
k
c + 4aiaā

b
ja
k
c ā
a
i a
j
bā
c
k − 6aiaā

b
ja
j
bā
a
i a
k
c ā
c
k

+ 3aiaā
a
i a
j
bā
b
jq

1
c q̄
c
1 + 3āai a

i
aā
b
ja
j
bq̄
c
2q

2
c − 6aiaā

b
ja
j
bā
a
i q

1
c q̄
c
1 − 6āai a

j
bā
b
ja
i
aq̄
c
2q

2
c

+ 9aiaā
a
i q

1
b q̄
b
1q

1
c q̄
c
1 + 9āai a

i
aq̄
b
2q

2
b q̄
c
2q

2
c − 6aiaā

a
i q

1
b q̄
c
1q

1
c q̄
b
1 − 6āai a

i
aq̄
b
2q

2
c q̄
c
2q

2
b

− 6aiaā
b
iq

1
b q̄
a
1q

1
c q̄
c
1 − 6āai a

i
bq̄
b
2q

2
aq̄
c
2q

2
c + 6aiaā

b
iq

1
b q̄
c
1q

1
c q̄
a
1 + 6āai a

i
bq̄
b
2q

2
c q̄
c
2q

2
a

− 6aiaā
b
iq

1
c q̄
a
1q

1
b q̄
c
1 − 6āai a

i
bq̄
c
2q

2
aq̄
b
2q

2
c − 6aiaā

b
iq

1
c q̄
c
1q

1
b q̄
a
1 − 6ābia

i
aq̄
c
2q

2
c q̄
a
2q

2
b−

− 6āai q
1
b q̄
b
1a
i
aq̄
c
2q

2
c + 12āai q

1
b q̄
c
1a
i
aq̄
b
2q

2
c + 12ǫijǫ

klaicā
b
ka
j
aā
c
l q

1
b q̄
a
1

+ 12ǫijǫklā
c
ia
k
b ā
a
ja
l
cq̄
b
2q

2
a

]

, (A.4)

where flavour indices are suppressed. Here we have arranged all fields in the following

doublet form

aia =

(

ai
b̄i

)

, and q1a =

(

q1
¯̃q1

)

, and q2a =

(

q̃2
q̄2

)

, (A.5)

which exhibits invariance of (A.4) under two types of SU(2) symmetries. First of all, we

find a SU(2)R R-symmetry, which acts on the indices a, b = 1, 2. This symmetry acts on

the bifundamental fields aia as well as on the flavours q1,2a . Apart from this, there is yet

another SU(2), which acts on the index i, j = 1, 2. We call this symmetry SU(2)D as it

can be understood to be the diagonal of the SU(2)A× SU(2)B global symmetry, which has

8The calculations for all other components follow in exactly the same manner. However, since the

calculation is rather tedious we will not discuss them.
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already been described in [4]. It is, however, important to notice that in contrast to the

pure ABJM-case this SU(2)D commutes with the R-symmetry group SU(2)R and therefore

does not lead to an additional enhancement of the SU(2)R R-symmetry group.

As a side remark, we note that the first four lines of (A.4) are invariant under a larger

SU(2)a × SU(2)q symmetry rotating separately aia and q1,2a . However, the last four lines

of (A.4) contain contractions between the aia and qia fields breaking SU(2)a × SU(2)q down

to SU(2)R.

B Killing spinors of CP
3

According to the reasoning of section 4.2, we expect to find a six-dimensional solution

space to the Killing spinor equation, which is parameterized by the integration constants

λ1, . . . , λ6. With these parameters, we can state the final result for the general Killing

spinor defined in (4.13):

f1 =
1

2
e−

i
4
(2ϕ+χ+2ψ)

[

e
i
2
(ϕ+χ+2ψ)λ5(cosα+ i cos µ sinα) − e

i
2
ϕλ6 sinα sinµ

+ e
i
2
ψ

(

e
i
2
χ

(

cos(ϑ/2)
((

eiϕλ1 − iλ3 cosα
)

cosµ+ λ3 sinα
)

(B.1)

+

(

eiϕλ1(sinα− i cosα cosµ) − λ3 cosµ

)

sin(ϑ/2)

)

+ sinµ

(

(

iλ2 + eiϕλ4 cosα
)

cos(ϑ/2) + sin(ϑ/2)(λ2 cosα+ λ4(sinϕ− i cosϕ))

))]

,

f2 =
1

2
e−

i
4
(2ϕ+χ+2ψ)

[

− e
i
2
(ϕ+χ+2ψ)λ5(cosα+ i cosµ sinα) − e

i
2
ϕλ6 sinα sinµ

+ e
i
2
ψ

(

e
i
2
χ

(

cos(ϑ/2)
((

eiϕλ1 + iλ3 cosα
)

cosµ− λ3 sinα
)

−
(

λ3 cosµ+ eiϕλ1(sinα− i cosα cosµ)
)

sin(ϑ/2)

)

+
((

eiϕλ4 cosα− iλ2

)

cos(ϑ/2) +
(

ieiϕλ4 + λ2 cosα
)

sin(ϑ/2)
)

sinµ

)]

, (B.2)

f3 =
1

2
e−

i
2
(ϕ+ψ)

[

e
i
4
(2ϕ−χ)λ6(cosα+ cosµ sinα) − e

i
4
(2ϕ+χ+4ψ)λ5 sinα sinµ

+ e−
i
4
(χ−2ψ)

(

sin(ϑ/2)

(

(

−eiϕλ4 − iλ2 cosα
)

cosµ+ λ2 sinα

+ e
i
2
χ
(

eiϕλ1 cosα− iλ3

)

sinµ

)

+ cos(ϑ/2)
(

eiϕλ4 sinα

+ e
i
2
χ
(

ieiϕλ1 + λ3 cosα
)

sinµ+ cosµ(λ2 − ieiϕλ4 cosα)
)

)]

, (B.3)
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f4 =
1

2
e−

i
2
(ϕ+ψ)

[

e
i
4
(2ϕ−χ)λ6(cosα+ i cosµ sinα) + e

i
4
(2ϕ+χ+4ψ)λ5 sinα sinµ

+ e−
i
4
(χ−2ψ)

(

sin(ϑ/2)

(

(

eiϕλ4 − iλ2 cosα
)

cosµ+ λ2 sinα

− e
i
2
χ
(

iλ3 + eiϕλ1 cosα
)

sinµ

)

+ cos(ϑ/2)

(

(

−λ2 − ieiϕλ4 cosα
)

cosµ

+ eiϕλ4 sinα− e
i
2 sinµ(λ3 cosα− ieiϕλ1)

))]

, (B.4)

f5 =
1

2
e−

i
2
(ϕ+ψ)

[

− e
i
4
(2ϕ−χ)λ6(cosα− i cosµ sinα) − e

i
4
(2ϕ+χ+4ψ)λ5 sinα sinµ

+ e−
i
4
(χ−2ψ)

(

sin(ϑ/2)

(

(

−eiϕλ4 − iλ2 cosα
)

cosµ− λ2 sinα

+ e
i
2
χ
(

eiϕλ1 cosα− iλ3

)

sinµ

)

+ cos(ϑ/2)

(

− eiϕλ4 sinα

+ e
i
2
χ
(

ieiϕλ1 + λ3 cosα
)

sinµ+ cosµ(λ2 − ieiϕλ4 cosα)

))]

, (B.5)

f6 = −1

2
e−

i
4
(2ϕ+χ+2ψ)

[

− e
i
2
(ϕ+χ+2ψ)λ5(cosα− i cos µ sinα) − e

i
2
ϕλ6 sinα sinµ

+ e
i
2
ψ

(

e
i
2
χ
(

cos(ϑ/2)
((

eiϕλ1 − iλ3 cosα
)

cosµ− λ3 sinα
)

(B.6)

+
(

λ3 cosµ+ eiϕλ1(i cosα cosµ+ sinα)
)

sin(ϑ/2)
)

+ sinµ
((

iλ2 + eiϕλ4 cosα
)

cos(ϑ/2) + sin(ϑ/2)(λ2 cosα− ieiϕλ4)
)

)]

.
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